G ANALYSIS OF PARAMETERS FOR \sim
\sim LARGE COMBIUUATORIAL MAPS
Julien COURTEL (AMACC, Caen)

DEFINITION
combinatorial map $=$ cellular embedding of a connected graph onto an oriented surface.
Examples:

DEFINITION
combinatorial map $=$ cellular embedding of a connected graph onto an oriented surface.
Examples:

DEFINITION
combinatorial map $=$ cellular embedding of a connected graph onto an oriented surface.
Examples:

Counter-example:

not cellular because \square is not a disk

DEFINITION
combinatorial map $=$ cellular embedding of a connected graph onto an oriented surface.
Examples:

DEFINITION
combinatorial map $=$ cellular embedding of a connected graph onto an oriented surface.
Examples:

DEFINITION
combinatorial map $=$ cellular embedding of a connected graph onto an oriented surface.
Examples:

actually
reversible

DEFINITION
combinatorial map $=$ cellular embedding of a connected graph onto

Examples:

DEFINITION
combinatorial map $=$ connected graph where we have cyclically ordered the half-edges around each vertex.
Examples:

DEFINITION
combinatorial map $=$ connected graph where we have cyclically ordered the half-edges around each vertex.
Examples:

Why is Q the same as ?

DEFINITION
combinatorial map $=$ connected graph where we have cyclically ordered the half-edges around each vertex.
Examples:

Why is different from 0 ?

Absent pattern in 0 : $a \leftrightarrow a^{\prime}$
aud $b \leftrightarrow b^{\prime} \quad a^{\prime} \cup b^{\prime}$

DEFINITION
combinatorial map $=$ connected graph where we have cyclically ordered the half-edges around each vertex.
Examples:

We root every map on a leaf.

DEFINITION
combinatorial map $=$ connected graph where we have cyclically ordered the half-edges around each vertex.

1 edge

2 edges
(2)

3 edges (10)

RECURRENCE FORMULA
$C_{n}=$ number of combinatorial maps with n edges
Recurrence formula: [Arquès Béraud]

$$
c_{1}=1 \quad c_{n}=\sum_{k=1}^{n-1} c_{k} c_{n-k}+(2 n-3) c_{n-1}
$$

RECURRENCE FORMULA
$C_{n}=$ number of combinatorial maps with n edges
Recurrence formula: [Arquès Béravi]

$$
\begin{array}{lll}
c_{1}=1 & c_{n}=\sum_{k=1}^{n-1} c_{k} c_{n-k}+(2 n-3) c_{n-1} \\
\text { map } & =1 \text { or or }
\end{array}
$$

RECURRENCE FORMULA
$C_{n}=$ number of combinatorial maps with n edges
Recurrence formula: [Arquès Béravi]

$$
c_{1}=1 \quad c_{n}=\sum_{k=1}^{n-1} c_{k} c_{n-k}+(2 n-3) c_{n-1}
$$

RECURRENCE FORMULA
$C_{n}=$ number of combinatorial maps with n edges
Recurrence formula: [Arquès Béraud]
number of

$$
c_{1}=1 \quad c_{n}=\sum_{k=1}^{n-1} c_{k} c_{n-k}+(2 n-3) c_{n-1}^{(\text {possible insertion }}
$$

RECURRENCE FORMULA
$C_{n}=$ number of combinatorial maps with n edges
Recurrence formula: [Arquès Béraud]
number of

$$
\begin{array}{lll}
c_{1}=1 & c_{n}=\sum_{k=1} c_{k} c_{n-k}+ \\
\text { map } & =1 \text { or }
\end{array}
$$

Generating function: $C(z)=\sum_{n \geqslant 0} c_{n} z_{0}^{n}$

$$
C(z)=z+C(z)^{2}+z_{0}\left(2 \frac{\partial \partial C(z)}{\partial z}-C(z)\right)
$$

WHY COUNTING MAPS WITH NO CONSIDERATION FOR GENUS?
\rightarrow Good framework to study parametric Riccati equations.
\rightarrow Connections with other combinatorial families-

- indecomposable chord diagrams
(link with the Quantum Fields Theory)
- lamboda-terms

WHY COUNTING MAPS WITH NO CONSDERATION FOR GENUS?
\rightarrow Good framework to study parametric Riccati equations.
\rightarrow Connections with other combinatorial families-

- indecomposable chord diagrams
(link with the Quantion Fields Theory)
- lamboda-terms

PART I

Connections with other combinatorial families

CHORD DIAGRAMS
diagram of n chords $=$ matching of the set $\{1, \ldots, 2 n\}$

indecomposable diagram
$=$ diagram that is not the concatenation of two diagrams.

CHORD DIAGRAMS
diagram of n chords $=$ matching of the set $\{1, \ldots, 2 n\}$
indecomposable diagram
$=$ diagram that is not the concatenation of two diagrams.

CHORD DIAGRAMS
1 chord $\cap(1)$
3 chords
(10)

indecomposable diagram
$=$ diagram that is not the concatenation of two
 diagrams.

CHORD DIAGRAMS

Proposition [Cuitanović Lautrup Pearson, Ossana de Mendez Rosenstienl, Tori]

- number of combinatorial maps with n edges number of indecomposable diagrams with n chords

RECURRENCE FORMULA: THE COMEBACK
$C_{n}=$ number of indecomposable diagrams with n chords
Recurrence formula:

$$
c_{1}=1 \quad c_{n}=\sum_{k=1}^{n-1} c_{k} c_{n-k}+(2 n-3) c_{n-1}
$$

RECURRENCE FORMULA : THE COMEBACK
$C_{n}=$ number of indecomposable diagrams with n chords
Recurrence formula:

$$
\begin{aligned}
& c_{1}=1 \quad c_{n}=\sum_{k=1}^{n-1} c_{k} c_{n-k}+(2 n-3) c_{n-1} \\
& \begin{array}{l}
\text { indecomposable } \\
\text { diagram }
\end{array}=\Omega \text { au }_{\text {NIt }} \text { au }
\end{aligned}
$$

RECURRENCE FORMULA : THE COMEBACK
$C_{n}=$ number of indecomposable diagrams with n chords
Recurrence formula:

$$
\begin{aligned}
& c_{1}=1 \quad c_{n}=\sum_{k=1}^{n-1} c_{k} c_{n-k}+(2 n-3) c_{n-1} \\
& { }_{\text {indecomposable }}=\Omega \text { our diagram }^{\text {ind }} \text { au }
\end{aligned}
$$

RECURRENCE FORMULA : THE COMEBACK
$c_{n}=$ number of indecomposable diagrams with n chords
Recurrence formula:

$$
\begin{aligned}
& c_{1}=1 \quad c_{n}=\sum_{k=1}^{n-1} c_{k} c_{n-k}+(2 n-3) c_{n-1} \\
& \begin{array}{c}
\text { indecomposable } \\
\text { diagram }
\end{array}=\Omega \alpha_{1} \text { au }
\end{aligned}
$$

LINEAR LAMBDA-TERMS

linear lamboda-term $=$
Motzkin tree where each leaf is bound by a unary vertex and each vertex binds exactly one leaf-
$\lambda x \cdot \lambda y\left(\left(x \lambda y \cdot z_{z}\right) y\right)$
Theorem [Bodini Gard Githenberg Jacquot] linear lamboda-terms \longleftrightarrow trivalent maps

LINEAR LAMBDA-TERMS

Theorem [Bodini Gardy Githenberg Jacquot] linear lamoda-terms \longleftrightarrow trivalent maps

LINEAR LAMBDA-TERMS

Theorem [Bodini Gardy Gittenberg Jacquot] linear lambda-terms \longleftrightarrow trivalent maps

LINEAR LAMBDA-TERMS

Theorem [Bodini Gardy Gittenberg Jacquot] linear lambda-terms \longleftrightarrow trivalent maps

LINEAR LAMBDA-TERMS

Theorem [Bodini Gardy Gittenberg Jacquot] linear lambda-terms \longleftrightarrow trivalent maps

LINEAR LAMBDA-TERMS

Theorem [Bodini Gardy Gittenberg Jacquot] linear lambda-terms \longleftrightarrow trivalent maps

LINEAR LAMBDA-TERMS

$$
\longleftrightarrow
$$

Theorem [Bodini Gardy Gittenberg Jacquot] linear lambda-terms \longleftrightarrow trivalent maps

LINEAR LAMBDA-TERMS

Theorem [Bodini Gardy Gittenberg Jacquot] linear lambda-terms \longleftrightarrow trivalent maps

NOAM ZEILEERGER'S CUBE

PART II

Asymptotic analysis of statistics on maps

ASYMPTOTIC NUMBER OF MAPS
$C_{n}=$ number of combinatorial maps with n edges
Recurrence formula:

$$
\begin{array}{ll}
c_{1}=1 & c_{n}=\sum_{k=1}^{n-1} c_{k} c_{n-k}+(2 n-3) c_{n-1} \\
\text { map }=1 \text { or formula : or }
\end{array}
$$

Question 0: Asymptotic estimate of c_{n} ?

ASYMPTOTIC NUMBER OF MAPS
$C_{n}=$ number of combinatorial maps with n edges
Recurrence formula:

$$
c_{1}=1 \quad c_{n}=\sum_{k=1}^{n-1} c_{k} c_{n-k}+(2 n-3) c_{n-1}
$$

Generating function: $C\left(z_{z}\right)=\sum_{n>0} c_{n} z_{0}^{n}$

$$
C(z)=z_{z}+C(z)^{2}+z_{0}\left(2 \frac{z_{z} \partial C(z)}{\partial z}-C(z)\right)
$$

Question 0: Asymptotic estimate of c_{n} ?

ASYMPTOTIC NUMBER OF MAPS
Generating function: $C\left(z_{0}\right)=\sum_{n \rightarrow 0} c_{n} z_{0}^{n}$

$$
C(z)=z_{z}+C(z)^{2}+z_{0}\left(2 z_{\partial}^{\partial z} \frac{\partial C(z)}{\partial z}-C(z)\right)
$$

Idea: (Formally) solve it!

ASYMPTOTIC NUMBER OF MAPS
Generating function: $C\left(z_{0}\right)=\sum_{n \rightarrow 0} c_{n} z_{0}^{n}$

$$
C(z)=z+C(z)^{2}+z\left(2 z \frac{\partial C(z)}{\partial z}-C(z)\right)
$$

Riccati $\ddot{\sim}$

$$
2 r^{2} \phi^{\prime \prime}(z)+\left(5 z_{0}-1\right) \phi^{\prime}(z)+\phi(z)=0
$$

ASYMPTOTIC NUMBER OF MAPS
Generating function: $C\left(z_{0}\right)=\sum_{n \rightarrow 0} c_{n} z_{o}^{n}$

$$
C(z)=z+C(z)^{2}+z\left(2 z \frac{\partial C(z)}{\partial z}-C(z)\right)
$$

Ricati \because
linear \because

$$
2 r^{2} \phi^{\prime \prime}\left(r_{0}\right)+\left(5 z_{-}-1\right) \phi^{\prime}\left(r_{0}\right)+\phi\left(z_{0}\right)=0
$$

Solution: $\quad \phi(r)=\sum_{n \geqslant 0}(2 n-1)!!r^{n}$
$(2 m-1)!!=(2 m-1) \times(2 n-3) \times \ldots 1$

ASYMPTOTIC NUMBER OF MAPS

$$
C\left(z_{y}\right)=q_{z}+2 z_{z}^{2} \frac{\phi^{\prime}\left(z_{0}\right)}{\phi\left(z_{0}\right)}
$$

$$
2 r^{2} \phi^{\prime \prime}\left(r_{0}\right)+\left(5 z_{0}-1\right) \phi^{\prime}\left(r_{0}\right)+\phi\left(z_{0}\right)=0
$$

Solution: $\quad \phi\left(r_{0}\right)=\sum_{n \geqslant 0}(2 n-1)!!r^{n}$

$$
(2 m-1)!=(2 m-1) \times(2 n-3) \times \ldots 1
$$

ASYMPTOTIC NUMBER OF MAPS

$$
\begin{gathered}
C\left(z_{y}\right)=r_{z}+2 z^{2} \frac{\phi^{\prime}\left(z_{z}\right)}{\phi\left(z_{0}\right)} \Leftrightarrow c_{n+1}=2 n \phi_{n}-\sum_{k=1}^{n-1} c_{n} \phi_{n-k} \\
2 z_{z^{2} \phi^{\prime \prime}\left(z_{z}\right)+\left(5 z_{-}-1\right) \phi^{\prime}\left(r_{0}\right)+\phi\left(z_{0}\right)=0}
\end{gathered}
$$

Solution: $\quad \phi\left(r_{0}\right)=\sum_{n \geqslant 0}(2 n-1)!!z^{n}$

$$
(2 m-1)!=(2 m-1) \times(2 n-3) \times \ldots 1
$$

ASYMPTOTIC NUMBER OF MAPS

$$
C\left(z_{z}\right)=r_{z}+2 z^{2} \frac{\phi^{\prime}\left(r_{0}\right)}{\phi\left(z_{0}\right)} \Leftrightarrow c_{n+1}=2 n \phi_{n}-\sum_{k=1}^{n-1} c_{n} \phi_{n-k}
$$

By some bootstrapping, $c_{n} \sim \phi_{n}\left(2 n-1-\frac{3}{2} n^{-1}-\frac{19}{4} n^{-2}+O\left(n^{-3}\right)\right)$

$$
2 r^{2} \phi^{\prime \prime}\left(z_{0}\right)+\left(5 z_{0}-1\right) \phi^{\prime}(z)+\phi(z)=0
$$

Solution: $\quad \phi\left(r_{0}\right)=\sum_{n \geqslant 0}(2 n-1)!!z^{n}$
$(2 m-1)!!=(2 m-1) \times(2 m-3) \times \ldots 1$

NUMBER OF VERTICES
$C\left(r_{z}\right)=$ generating function of maps where r_{0} counts the edges
Equation

$$
C=\text { ry }+C^{2}+2 r_{z}^{2} \frac{\partial C}{\partial r}-r_{0} C
$$

Question 1: behaviour of the number of vertices?

NUMBER OF VERTICES
$C(z, u)=$ generating function of maps where r_{z} counts the edges and μ counts the vertices
Equation

$$
C=r_{0} u+C^{2}+2 r_{z}^{2} \frac{\partial C}{\partial r b}-r_{0} C
$$

Question 1: behaviour of the number of vertices?

NUMBER OF VERTICES

$$
C=r u+C^{2}+2 z^{2} \frac{\partial C}{\partial r_{0}}-r_{0} C
$$

NUMBER OF VERTICES

$$
\begin{aligned}
& C=r u+C^{2}+2 z_{z}^{2} \frac{\partial C}{\partial r}-r C
\end{aligned}
$$

NUMBER OF VERTICES

$$
\begin{aligned}
& C=r u+C^{2}+2 z^{2} \frac{\partial C}{\partial r^{2}}-r C
\end{aligned}
$$

$$
\begin{aligned}
& 2 r^{2} \phi^{\prime \prime}(z, \mu)+\left(3 z+2 z z^{\prime}-1\right) \phi^{\prime}(z, \mu)+\frac{1+\mu}{2} \phi(z, \mu)=0
\end{aligned}
$$

NUMBER OF VERTICES

$$
\begin{aligned}
& C=r u+C^{2}+2 z_{z}^{2} \frac{\partial C}{\partial r_{0}}-r_{r} C
\end{aligned}
$$

$$
\begin{aligned}
& 2 z^{2} \phi^{\prime \prime}(z, \mu)+(3 z+2 z u-1) \phi^{\prime}(z, \mu)+\frac{1+u}{2} \phi(z, \mu)=0
\end{aligned}
$$

Solution: $\phi(r u)=1+\frac{\mu(u+1)}{2} r+\frac{\mu(\operatorname{cun})(u+2)(u+s)}{2^{2} \times 2!} r_{r}^{2}+\cdots+\frac{\mu(u+1)-(u+2 n-1)}{2^{2} \times n!} r^{2}+\cdots$

NUMBER OF VERTICES
Fact: $\phi(r, \mu)$ behaves like $C(z, \mu)$
Theorem:
For the uniform distribution of combinatorial maps,

$$
\begin{aligned}
& \begin{array}{c}
\text { Number of } \\
\text { vertices }
\end{array} \longrightarrow \begin{array}{c}
\text { Gaussian law } \\
\text { mean }
\end{array} \sim \ln (x)+\gamma_{t} \ldots . \\
& \phi(r \mu u)=1+\frac{\mu(u+1)}{2} r_{\gamma}+\frac{\mu(u+1)(u+2)(u+3)}{2^{2} \times 2!} r^{2}+\cdots+\frac{\mu(u+1) \cdots(u+2 n-1)}{2^{n} \times n!} r^{n}+\cdots
\end{aligned}
$$

NUMBER OF EDGES INCIDENT TO THE ROOT $C(z, u)=$ generating function of maps where z_{g} counts the edges and μ counts the number of edges incident to the root vertex
Equation:

$$
\begin{aligned}
& C(z, \mu)=z \mu+\mu C(z, \mu) C(z, 1)+\mu\left(2 z_{z}^{2} \frac{\partial C}{\partial z}-z C\right) \\
& \text { map }=\text { or (III) (IID or (y) }
\end{aligned}
$$

NUMBER OF EDGES INCIDENT TO THE ROOT

$$
\begin{aligned}
& C(z, \mu)=z \mu+\mu C(z, \mu) C(z, 1)+\mu\left(2 z^{2} \frac{\partial C}{\partial r}-z C\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mu r_{r}^{2} C^{\prime}(2 \pi) \phi\left(z_{0} 1\right)+2 \mu r_{r}^{2} C(z u) \phi^{\prime}\left(z_{0} 1\right)=\left(1-2 \mu r_{r}\right) C(2, u) \phi\left(z_{0} 1\right)-\phi\left(z_{0} 1\right)
\end{aligned}
$$

NUMBER OF EDGES INCIDENT TO THE ROOT

$$
\begin{aligned}
& C(z, \mu)=z \mu+\mu C(z, \mu) C(z, 1)+\mu\left(2 z^{2} \frac{\partial C}{\partial r}-z C\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mu r_{r}^{2} C^{\prime}(2 \pi) \phi\left(z_{0} 1\right)+2 \mu r_{r}^{2} C(z u) \phi^{\prime}\left(z_{0} 1\right)=\left(1-2 \mu r_{r}\right) C(2, \cdots) \phi\left(z_{0} 1\right)-\phi\left(z_{0} 1\right) \\
& \text { (} P\left(r_{z}, \mu\right)=\phi\left(z_{0}, \mu\right) \phi\left(z_{0}, 1\right) \\
& 2 \mu z_{r^{2}} P^{\prime}\left(z_{z}, \mu\right)=\left(1-2 \mu z_{z}\right) P\left(z_{z}, \mu\right)-\phi\left(z_{0}, 1\right) \quad \text { almost } \quad \text { linear! }
\end{aligned}
$$

NUMBER OF EDGES INCIDENT TO THE ROOT

$$
C\left(r_{0}, \mu\right)=r_{0} \mu+\mu C\left(r_{0}, \mu\right) C(z, 1)+u\left(2 z_{0}^{2} \frac{\partial C}{\partial z}-z C\right)
$$

Theorem:
For the uniform distribution of combinatorial maps,
Number of edges incident to the root

NUMBER OF EDGES INCIDENT TO THE ROOT

$$
C(z, \mu)=r \mu+\mu C(z, \mu) C(z, 1)+\mu\left(2 z_{0}^{2} \frac{\partial C}{\partial z}-z C\right)
$$

Theorem:
For the uniform distribution of combinatorial maps,
Number of edges incident to the root divided by n

NUMBER OF COMPONENTS ATTACHED TO THE ROOT
$C(z, \mu)=$ generating function of maps where r_{z} counts the edges and μ counts the number of connected components attached to
Equation:

$$
C(z, \mu)=z_{0}+\mu C(z, \mu) C(z, 1)+\left(2 z^{2} \frac{\partial C}{\partial z}-z C\right)
$$

$$
\operatorname{map}=\text { ! or }
$$

or

NUMBER OF COMPONENTS ATTACHED TO THE ROOT
$C(z, \mu)=$ generating function of maps where z_{0} counts the edges and μ counts the number of connected components attached to
Equation:

$$
C(z, \mu)=r_{0}+\mu C(z, \mu) C(z, 1)+\left(2 r^{2} \frac{\partial C}{\partial r}-z_{0} C\right)
$$

Theorem: the root vertex.

NUMBER OF COMPONENTS ATTACHED TO THE ROOT
$C(z, \mu)=$ generating function of maps where z_{0} counts the edges and u counts the number of connected components attached to

Equation:

$$
C(z, \mu)=r_{0}+\mu C(z, \mu) C(z, 1)+\left(2 z^{2} \frac{\partial C}{\partial r}-z C\right)
$$

Theorem: the root vertex.

ROOT VERTEX DEGREE
$C(z, u)=$ generating function of maps where r_{z} counts the edges and u counts the degree of the root vertex

Equation:

$$
\begin{aligned}
& C(\eta, \mu)=\eta \mu+\mu C(z, \mu) C(\eta, 1)+\mu\left(2 z_{0}^{2} \frac{\partial C}{\partial \eta_{0}}-z_{0} C\right)+\left(\mu^{2}-\mu\right) \frac{\partial C}{\partial u} \\
& \operatorname{map}=\text { or }
\end{aligned}
$$

ROOT VERTEX DEGREE
$C(r, u)=$ generating function of maps where r_{z} counts the edges and u counts the degree of the root vertex

Equation:

$$
C(\eta, u)=r u+\mu C(z, \mu) C(\eta, 1)+\mu\left(2 z_{z}^{2} \frac{\partial C}{\partial z_{0}}-z_{z} C\right)+\left(\mu^{2}-\mu\right) \frac{\partial C}{\partial u}
$$

Theorem:
Degree of the root vertex

ROOT VERTEX DEGREE
$C\left(r_{0}, u\right)=$ generating function of maps where r_{z} counts the edges and u counts the degree of the root vertex

Equation:

$$
C(\eta, u)=r u+\mu C(z, \mu) C(\eta, 1)+\mu\left(2 z_{z}^{2} \frac{\partial C}{\partial z_{0}}-z_{z} C\right)+\left(\mu^{2}-\mu\right) \frac{\partial C}{\partial u}
$$

Theorem:
Degree of the root vertex

uniform law divided by x on $[0,1]$

NUMBER OF LOOPS
$C\left(r_{z}, \mu, l\right)=$ generating function of maps where r_{0} counts the edges u counts the degree of the root vertex

Equation: and l counts the number of loops.

$$
\begin{aligned}
& C(z, u)=z u+\mu C(z, u) C(z, 1)+\mu\left(2 z_{z}^{2} \frac{\partial C}{\partial r_{0}}-z_{0} C\right)+\left(\mu^{2} l-u\right) \frac{\partial C}{\partial u} \\
& \operatorname{map}=1 \text { or }
\end{aligned}
$$

NUMBER OF LOOPS
$C\left(r_{0}, \mu, l\right)=$ generating function of maps where r_{0} counts the edges u counts the degree of the root vertex

Equation: and l counts the number of loops.

$$
C(z, \mu)=z_{0} \mu+\mu C\left(r_{0}, \mu\right) C(z, 1)+\mu\left(2 z_{z}^{2} \frac{\partial C}{\partial r_{0}}-z_{C} C\right)+\left(\mu^{2} l-\mu\right) \frac{\partial C}{\partial u}
$$

Theorem
number of loops divided by x

PART III

Lessons to learn

1 Know your bijections

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima
 and k vertices

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima

 and k vertices

1 Know your bijection
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima

 and k vertices

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k leff-to-right maxima

maps with n edges and k vertices

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima

 with n edges and k vertices

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima

 and k vertices

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima

 and k vertices

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima
 and k vertices

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima
 and k vertices

1 Know your bijections
Why does the root vertex degree asymptotically follow an uniform law?
indecomposable diagrams with n chords and k left-to-right maxima
 and k vertices
 root vertex degree
[2. Think bigger

2 Think bigger
Why does the magic trick work for the number of edges incident to the root?

2 Think bigger
Why does the magic trick work for the number of edges incident to the root?
maps \longleftrightarrow indecomposable diagrams

2 Think bigger
Why does the magic trick work for the number of edges incident to the root?

2 Think bigger
Why does the magic trick work for the number of edges incident to the root?

2 Think bigger
Why does the magic trick work for the number of edges incident to the root?

If $m_{n}=$ number of sequences $M_{a p}, M_{a p}, \ldots, M a p l$ with n edges,

$$
m_{n}=(2 n-1) \times m_{n-1} \text { : explanation? }
$$

$$
0^{1} \triangle \text { a }
$$

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

\uparrow

$(2 x-1)$ is the number of \uparrow

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

First case: We choose \uparrow in the first map.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

First case: We choose \uparrow in the first map.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Real first case: We choose \uparrow in $\frac{a}{3}$ map.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Real first case: We choose \uparrow in $\frac{a}{3}$ map.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Real first case: We choose \uparrow in $\frac{a}{3}$ map.
(2) Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Real first case: We choose \uparrow in $\begin{gathered}\text { a } \\ 3\end{gathered} \mathrm{map}$.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Second case: We choose \uparrow in an interval bot not the $1^{s t}$.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Second case: We choose \uparrow in an interval bot not the $1^{\text {st }}$.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Second case: We choose \uparrow in an interval bot not the $1^{s t}$.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Second case: We choose \uparrow in an interval bot not the $1^{s t}$.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Second case: We choose \uparrow in an interval bot not the $1^{\text {st }}$.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Last case: We choose \uparrow in the first interval.

2 Think bigger

$$
m_{n}=(2 n-1) \times m_{n-1}: \text { Why? }
$$

Last case: We choose \uparrow in the first interval.

2 (Think bigger
Every case except the $3^{\text {rd }}$ one increases the number of edges incident to the root by 1 .

2 (Think bigger
Every case except the $3^{\text {rd }}$ one increases the number of edges incident to the root by 1 . In terms of GFs, it translates $\left(1-2 \mu z_{d}\right) P\left(\gamma_{z}, \mu\right)=2 \mu r_{z}^{2} P^{\prime}\left(\gamma_{z}, \mu\right)+\phi(z, 1)$.

$1^{\text {st }}$ case:
$2{ }^{\text {ad }}$ case:
$3^{\text {red }}$ case:

3 Be humble and work, grasshopper.

3 Be humble and work, grasshopper.
\rightarrow Wide range of limits laws for combinatorial maps: towards a taxonomy of possible laws?
\rightarrow Understand the operation $C=y_{y}+K z_{z}^{2} \frac{\phi^{\prime}}{\phi}$
\rightarrow Extension to other families of maps? to other combinatorial families?

THANK YOU!

