ENUMERATION OF PLANAR MAPS
WITH ADDITIONAL STRUCTURES

Julien COURTIEL (Simon Fraser University/PIMS)

CanaDA 2015
PLANAR MAPS IN STATISTICAL PHYSICS
Planar map = connected graph + embedding of this graph in the plane, considered up to continuous deformation.
Planar map = connected graph + embedding of this graph in the plane, considered up to continuous deformation.
Planar map = connected graph + embedding of this graph in the plane, considered up to continuous deformation.
Planar map = connected graph
+ embedding of this graph in the plane, considered up to continuous deformation.
Planar map = connected graph + embedding of this graph in the plane, considered up to continuous deformation.

We root every planar map at an outer corner.
Planar map = connected graph + embedding of this graph in the plane, considered up to continuous deformation.

We root every planar map at an outer corner.
LARGE MAPS
UNIVERSALITY CLASS

Standard asymptotic behaviour of the number of planar maps:

$$\sim c \rho^{-n} n^{-\frac{5}{2}}$$

Examples:
- General planar maps: $$\frac{2}{\sqrt{\pi n}} 12^n n^{-5/2}$$
- 2-connected planar maps: $$\frac{\sqrt{3}}{24\pi n} (\frac{27}{\sqrt{\pi}})^n n^{-5/2}$$
- Planar triangulations: $$\frac{\sqrt{16}}{32\pi n} (\frac{256}{27})^n n^{-5/2}$$

To be compared with the standard asymptotic behaviour of the number of plane trees:

$$\sim c' \rho^{-n} n^{-\frac{3}{2}}$$
ADDITIONAL STRUCTURES
Additional structures: Spanning trees, colourings, percolation, Ising/Potts model, self-avoiding walks... [Tutte, Mullin, Kazakov, Borot, Bouttier, Guitter, Sportiello, Eynard, Duplantier, Bousquet-Mélou, Schaeffer, Bernardi, Angel...]
THE POTTS MODEL
THE POTTIS MODEL
FORESTED MAPS

with Mireille BOUSQUET-MÉLOU (Bordeaux)
Spanning forest of M = graph F such that:
- $V(F) = V(M)$
- $E(F) \leq E(M)$ has no cycle.

Forested map $(M, F) =$ Rooted map M with a spanning forest F.

$$F(\varphi_3, \mu) = \sum_{(M, F) \text{ 4-valent forested map}} \varphi_3^{\text{# faces}} \mu^{\text{# components} - 1}$$
Spanning forest of M = graph F such that:
- $V(F) = V(M)$
- $E(F) \leq E(M)$ has no cycle.

Forest map $(M,F) =$ Rooted map M with a spanning forest F.

$$F(z_0, w) = \sum_{(M,F) \in \text{4-valent forested map}}^{\text{M}} \text{# faces} \times \text{# components} - 1$$
WHAT DOES IT MODEL?

1) Limit $q \to 0$ of the Potts model

2) Tutte polynomial $T_M(\mu + 1, 1)

3) Sandpile model

3)

$$F(g, \mu) = \sum_{\text{quadrangulation with recurrent configuration } C} g^\# \text{ vertices} \mu^{\text{level}(C)}$$
WHAT DOES IT MODEL?

1) Limit $q \to 0$ of the Potts model.

2) Tutte polynomial $T_M(u+1, 1)$.

3) Sandpile model

\[
F(g, u) = \sum_{\text{quadrangulation with recurrent configuration } C} g^\# \text{ vertices} \cdot (u+1)^{\text{level}(C)}
\]
WHAT DOES IT MODEL?

1) Limit \(q \to 0 \) of the Potts model.

2) Tutte polynomial \(\overline{T}_M (\mu + 1, 1) \)

3) Sandpile model

3)\[F (g, \mu) = \sum \text{quadrangulation with recurrent configuration } C \# \text{ vertices}^{(\mu + 1) \text{level}(C)} \]
WHAT DOES IT MODEL?

1) Limit $q \to 0$ of the Potts model.
2) Tutte polynomial $T_M(\mu + 1, 1)$
3) Sandpile model

3)

$$F(\beta, \mu) = \sum_{\text{quadrangulation with recurrent configuration } C} \beta^\# \text{ vertices } \sim \mu \text{ level}(C)$$

\[\sim \mu = \mu + 1\]
WHAT DOES IT MODEL?

1) Limit $q \to 0$ of the Potts model.

2) Tutte polynomial $T_M (\mu + 1, 1)$

3) Sandpile model

$F(g, \mu) = \sum_{\text{quadrangulation with recurrent configuration } C} \# \text{ vertices } \tilde{\mu} \text{ level}(C)$

$\tilde{\mu} = \mu + 1$
WHAT DOES IT MODEL?

1) Limit \(q \to 0 \) of the Potts model.
2) Tutte polynomial \(T_M(\mu+1, 1) \)
3) Sandpile model

\[F(\mathcal{G}, \mu) = \sum \text{ # vertices } \tilde{\mu} \text{ level}(C) \]

Natural domain \(\mu \in [-1, +\infty) \)

\[\tilde{\mu} = \mu + 1 \]
SPECIAL VALUES OF μ

\[
F(x, \mu) = \sum_{(M,F) \text{ 4-valent forested map}} \begin{array}{c}
\text{# faces} \\
\text{# components} - 1
\end{array}
\]

* $\mu = 1$: spanning forests

* $\mu = 0$: spanning trees [Mullin, 1967]

* $\mu = -1$: root-connected acyclic orientations on (dual) quadrangulations.
A combinatorial decomposition

Forest map = map where each vertex is weighted by a tree.
Forested map = map where each vertex is weighted by a tree.
A COMBINATORIAL DECOMPOSITION

Forested map = map where each vertex is weighted by a tree.
A combinatorial decomposition

Forest map = map where each vertex is weighted by a tree.
Forested map = map where each vertex is weighted by a tree.
Forest map = map where each vertex is weighted by a tree.
A COMBINATORIAL DECOMPOSITION

Forested map = map where each vertex is weighted by a tree.
The Generating Function of Forested Maps

Theorem

There exists a unique series R in \mathbb{z} with coefficients in $\mathbb{Q}[u]$ such that

$$R = z_8 + u \sum_{i \geq 2} \frac{(3i-3)!}{(i-1)!^2 i!} R^i$$

Then:

$$F' = 4 \sum_{i \geq 2} \frac{(3i-2)!}{(i-2)! i!^2} R^i$$
Theorem

There exists a unique series R in z_8 with coefficients in $\mathbb{Q}[w]$ such that

$$R = z_8 + \omega \sum_{i \geq 2} \frac{(3i-3)!}{(i-1)!^2 i!} R^i$$

Then:

$$F' = 4 \sum_{i \geq 2} \frac{(3i-2)!}{(i-2)! i!^2} R^i$$

For $\omega = 0$, [Mullin]

$$R = z_8 \quad \text{and} \quad F' = 4 \sum_{i \geq 2} \frac{(3i-2)!}{(i-2)! i!^2} z_8^i.$$
Phase Transition At 0

\(f_n(w) = [z^n] F(z, w), \ w \text{ is fixed} \)

\(-1 \leq w < 0\)

\(f_n(w) \sim \frac{cw \bar{w}^{-n}}{n^3 \ln^2 n} \)

New "Universality class" for maps

\(w = 0 \)

\(f_n(w) \sim \frac{cw \bar{w}^{-n}}{n^3} \)

maps with a spanning tree

\([\text{Mullin}] \)

\(0 < w \)

\(f_n(w) \sim \frac{cw \bar{w}^{-n}}{n^{5/2}} \)

standard
Phase Transition At 0

\(f_n(u) = \left[z^n \right] F(z, u), \ u \) is fixed.

\[-1 \leq u < 0 \]

\(f_n(u) \sim \frac{c u^{\frac{1}{u}}}{n^3 \ln^2 n} \)

"Universality class" for maps

\[0 < u \]

\(f_n(u) \sim \frac{c u^{\frac{1}{u}}}{n^{5/2}} \)

maps with a spanning tree [Mullin]

Cor

For \(u \in (-1, 0) \), \(F(z, u) \) is not D-finite, i.e., \(F \) satisfies no linear differential equation.
Fix $n \in \mathbb{N}$, consider a random forested map with n faces - (under uniform distribution)
SOME PROBABILITY RESULTS

Fix $n \in \mathbb{N}$, consider a random forested map with n faces - (under uniform distribution)

$C_m = r.v.$ that counts the number of components

Th

$C_m \xrightarrow{\text{distribution}}$ Gaussian law with linear mean & linear variance.
Some probability results

Fix $n \in \mathbb{N}$, consider a random forested map with n faces - (under uniform distribution)

$C_m = \text{r.v. that counts the number of components}$

Th

$C_m \rightarrow \text{Gaussian law with linear mean }$ & linear variance
SOME PROBABILITY RESULTS

Fix \(n \in \mathbb{N} \), consider a random forested map with \(n \) faces.
(under uniform distribution)

\[S_n = \text{size of the root component (number of vertices)} \]

\[
\lim_{n \to +\infty} P_n(S_n = k) = \frac{4}{(k-1)!k!(k+1)!} \frac{\binom{k}{2}}{\phi(2)}
\]
The next step: Percolation
BOND PERCOLATION ON MAPS
Bond Percolation on Maps

* = active with probability \(p \)
BOND PERCOLATION ON MAPS

* = active with probability \(p \)
Bond Percolation on Maps

* = active with probability \(p \)
bond animal = connected subgraph containing the root. (not necessarily spanning)
BOND PERCOLATION ON MAPS

bond animal = connected subgraph containing the root,
(not necessarily spanning)

Map equipped with a bond animal = map where each face is weighted by a map.
THANK YOU!