UNDERSTANDING LATTICE WALKS VIA CENTRAL WEIGHTINGS

Julien COURTIEL (LIPN, Paris 13)

Co-authors

Stephen MELCZER (Univ. Waterloo/ENS Lyon)
Marni MISHNA (Simon Fraser University)
Kilian RASCHEL (Université de Tours)

Séminaire Combinatoire
12 octobre 2016
Various asymptotic behaviours
MOTIVATION

Various asymptotic behaviours
Exponential growth
MOTIVATION

Various asymptotic behaviours
Exponential growth
Critical exponent
MOTIVATION

Various asymptotic behaviours
Exponential growth
Critical exponent

Motivation: opt for a continuous model to detect the transitions
MOTIVATION

Various asymptotic behaviours
Exponential growth
Critical exponent

Motivation: opt for a continuous model to detect the transitions

Central weightings
PART 1

Weighted Gouyou-Beauchamps model
In general: walks starting at (0,0) staying in the positive quadrant with steps in \mathcal{S}.

Where $\mathcal{S} \subseteq \{<, >, \uparrow, \downarrow, \uparrow\downarrow, \downarrow\uparrow\}$

Here: $\mathcal{S} = \{<, >, \uparrow\downarrow, \downarrow\uparrow\}$

\rightarrow Gouyou-Beauchamps model

Number of walks ending anywhere after...

1 step: 1 2 steps: 3 3 steps: 6
4 steps: 20 5 steps: 50 6 steps: 175
GOUYOU-BEAUCHAMPS MODEL

In general: walks starting at (0,0) staying in the positive quadrant with steps in \mathcal{S}

where $\mathcal{S} \subseteq \{\leftarrow, \rightarrow, \uparrow, \downarrow, \swarrow, \searrow\}$

Here: $\mathcal{S} = \{\leftarrow, \rightarrow, \swarrow, \searrow\}$

\rightarrow Gouyou-Beauchamps model

Number of walks ending anywhere after...

1 step: 1 2 steps: 3 3 steps: 6 4 steps: 20 5 steps: 50 6 steps: 175

A small connection with probabilities:

$P(\text{staying in the quadrant after 6 steps}) = \frac{175}{4^6}$
A weight to each step: \(a > 0, b > 0\)

\[a^{-1}, b \]

\[a^{-1}, a \]

\[a \]

\[a^{-1}, a^{-1} \]

\[ab^{-1} \]

Weight of walks ending anywhere after...

1 step: \(a\)

2 steps: \(1 + b + a^2\)

3 steps: \(2ab + a^3 + 3a\)

A small connection with probabilities:

\[P(\text{staying in the quadrant after 3 steps}) = \frac{2ab + a^3 + 3a}{(a + a^{-1} + ab + ba^{-1})^3} \]
WEIGHTED GOUYOU-BEAUCHAMPS MODEL

A weight to each step:
\[(a > 0, b > 0)\]

\[a^{-1} b \quad a \quad a^{-1} b^{-1} \]

Weight of walks ending anywhere after:

1 step: \[a\]

2 steps: \[1 + b + a^2\]

3 steps: \[2ab + a^3 + 3a\]

\[Q_p(x, y; z) := \text{generating function of weighted GB-walks}\]

\[= \sum_{\omega \text{ GB-walk } (0,0) \rightarrow (i,j) \text{ of length } n} \text{weight}(\omega) x^i y^j z^n\]

\[\text{weight}(\omega) := \prod_{s \text{ step in } \omega} \text{weight}(s)\]

\[Q(x, y; z) = \text{GF of unweighted GB-walks}\]

\[= C_{\frac{a}{2}} \sum_{\omega \text{ GB-walk } (0,0) \rightarrow (i,j) \text{ of length } n} x^i y^j z^n\]

\[\text{Rk: } Q_p(1,1; z) = Q(a, b; z)\]
Theorem A weight \(p_d \) is assigned to each \(d \in \{ \leftarrow, \rightarrow, \uparrow, \downarrow \} \).

There is equivalence between:

(i) The probability of a given walk only depends on its length and its endpoint.

(ii) There exist constants \(a, b, c > 0 \) such that
\[
\begin{align*}
p_{\leftarrow} &= c a^{-1} \\
p_{\rightarrow} &= c a \\
p_{\uparrow} &= c a^{-1} b \\
p_{\downarrow} &= c a b^{-1}
\end{align*}
\]

(iii) \(p_{\leftarrow} \times p_{\rightarrow} = p_{\uparrow} \times p_{\downarrow} \)

(iv) If \(Q^p(x, y, z) := \text{the weighted generating function} \)
and \(Q(x, y, z) := \text{the unweighted one,} \)
then \(Q^p(x, y, z) = Q(ax, by, cz) \).
CENTRAL WEIGHTING

Theorem A weight \(p_a \) is assigned to each \(a \in \{<, \rightarrow, \uparrow, \downarrow\} \). There is equivalence between:

(i) The probability of a given walk only depends on its length and its endpoint.

(ii) There exist constants \(a, b, c > 0 \) such that
\[
\begin{align*}
p_\leftarrow &= c \ a^t \\
p_\rightarrow &= c \ a \\
p_\uparrow &= c \ a^t b \\
p_\downarrow &= c ab^{-1}
\end{align*}
\]

(iii) \(p_\leftarrow \times p_\rightarrow = p_\uparrow \times p_\downarrow \)

(iv) If \(Q_p(x,y,z) \) := the weighted generating function and \(Q(x,y,z) := the unweighted one, \) then \(Q_p(x,y,z) = Q(ax,by,cz) \).

Too restrictive?
Theorem:

Weight of GB-walks of length \(n \)

\[= [g^n] Q_{\rho}(1,1;\lambda) \]

\[\sim K^n \rho^n n^{-\alpha} \]
Theorem:
Weight of GB-walks of length \(n \) = \(g_n \mathcal{Q}_n(1,1;k) \)
\(\sim K^n \rho^n - \alpha \)
THE BIG THEOREM

In terms of the drift = \((a - a^t + ab^{-1}a^{-1}b^{-1} - ab^{-1}a, ab^{-1}a^{-1}b^{-1} - ab^{-1})\)

Theorem:
Weight of GB-walks of length \(n\) = \([g^n]\mathcal{Q}_n(1,1;k)

\sim K[n] \rho^n \sim n^{-\alpha}

Diagram:
- Directed
- Axial
- Free
- Balanced
- Reluctant
- Transitional
THE BIG THEOREM

In terms of the drift \((\mathbf{a} - \mathbf{a}^t + \mathbf{a} \mathbf{b} - \mathbf{a}^t \mathbf{b}, \mathbf{a} \mathbf{b} - \mathbf{a} \mathbf{b}^t) \)

Theorem:

Weight of GB-walks of length \(n \) = \([y^n] Q_n(1,1;\mathbf{a})\)

\(~ K \mathbf{n}^n \mathbf{p} \mathbf{n}^{-\alpha} ~\)
THE BIG THEOREM

Also works when (0,0) is not the starting point.

Theorem:

Weight of GB-walks of length n starting at (i,j) ending anywhere

$$\sim K \sqrt{(i,j)} \cdot \rho^n \cdot n^{-\alpha}$$

fonction harmonique
APPLICATION: RANDOM GENERATION

1. \([\text{Lumbroso, Mishna, Ponty}]\)
 Generation in \(O(n^{\alpha - \frac{1}{2}} \log n)\) time

 \(\alpha > 3\)

2. Anticipated rejection algorithm from \([\text{Bacher, Sportiello}]\)
 Linear complexity for free and axial cases
UNDERSTANDING THE PROOF

Main ingredient:

Analytic Combinatorics in several variables
UNDERSTANDING THE PROOF

Main ingredient: Analytic Combinatorics in several variables

Steps:
1. Express the generating function in terms of a diagonal
2. Find the contributing points
3. Transform the generating function into an integral and apply some theorem ([Hörmander])

 exponential growth
 whole asymptotic estimate
UNDERSTANDING THE PROOF

Main ingredient: Analytic Combinatorics in several variables

Steps:

1. Express the generating function in terms of a diagonal
2. Find the contributing points

3. Transform the generating function into an integral and apply some theorem ([Hörmander])
FUNCTIONAL EQUATION

3 important functions:

\[S(x, y) = x + x^{-1} + xy^{-1} + x^{-1}y \] INVENTORY

\[K(x, y; z) = xy(1 - zS(x, y)) \] KERNEL

\[Q(x, y; z) \] UNWEIGHTED GENERATING FUNCTION

KERNEL EQUATION:

\[K(x, y; z) Q(x, y; z) = xy - K(x, 0; z) Q(x, 0; z) - K(0, y; z) Q(0, y; z) + K(0, 0; z) Q(0, 0; z) \]

Walks without constraints

Boundary restrictions (Inclusion - exclusion)
Into a diagonal expression

Kernel equation:

\[K(x, y ; \mathbf{z}) Q(x, y ; \mathbf{z}) = xy - K(x, 0 ; \mathbf{z}) Q(x, 0 ; \mathbf{z}) - K(0, y ; \mathbf{z}) Q(0, y ; \mathbf{z}) + K(0, 0 ; \mathbf{z}) Q(0, 0 ; \mathbf{z}) \]

We want to eliminate this
INTO A DIAGONAL EXPRESSION

KERNEL EQUATION:

$$K(x,y,z)Q(x,y,z) = xy - K(x,0,z)Q(x,0,z) - K(0,y,z)Q(0,y,z) + K(0,0,z)Q(0,0,z)$$

We want to eliminate this

Algebraic operations
- Orbit sum
- Extraction of positive coefficients

DIAGONAL EXPRESSION:

$$Q(1,1,z) = \Delta \left(\frac{(1-x)(1-y)(1+x)(x^2-y^2)(x-y)(x+y)}{(1-xyyzS(x^{-1},y^{-1}))(1-x)(1-y)} \right)$$

where

$$\Delta \left(\sum_{i,\delta,\gamma,n \geq 0} f_i,\delta,\gamma,x^i y^\delta \gamma^n \right) = \sum_{n \geq 0} f_{n,n,n} z^n$$
INTO A DIAGONAL EXPRESSION

KERNEL EQUATION:

\[K(x,y;i^2) Q(x,y;i^2) = xy - K(x,0;i^2) Q(x,0;i^2) - K(0,y;i^2) Q(0,y;i^2) + K(0,0;i^2) Q(0,0;i^2) \]

We want to eliminate this

Algebraic operations
- Orbit sum
- Extraction of positive coefficients

DIAGONAL EXPRESSION:

\[Q(1,1;i^2) = \sum \left(\frac{(1-x)(1-y)(1+x)(x^2-y^2)(x-y)(x+y)}{(1-xy^2 S(x^1,y^1))(1-x)(1-y)} \right) \]

where

\[\Delta \left(\sum_{i,j,n \geq 0} b_{i,j,n} x^i y^j z^n \right) = \sum_{n \geq 0} b_{n,n,n,n} z^n \]
INTO A DIAGONAL EXPRESSION

KERNEL EQUATION:

$$K(x, y; z)Q(x, y; z) = xy - K(x, 0; z)Q(x, 0; z) - K(0, y; z)Q(0, y; z) + K(0, 0; z)Q(0, 0; z)$$

We want to eliminate this

Algebraic operations

- Orbit sum
- Extraction of positive coefficients

DIAGONAL EXPRESSION:

$$Q(1, 1; z) = \Delta \left(\frac{(1-x)(1-y)(1+x)(x^2 - y^2)(x-y)(x+y)}{(1-xyz)^2(x^{-1}, y^{-1})} \right)$$

```
(1-x) (1-y)
```

Orbit sum applied to the start point

codes the excursions

where

$$\Delta \left(\sum_{i, \delta, n \geq 0} b_i \delta, n x^i y^\delta z^n \right) = \sum_{n > 0} b_n n, n, n z^n$$
INTO A DIAGONAL EXPRESSION

Kernel Equation:

\[
K(x, y; \tilde{z}) Q(x, y; \tilde{z}) = xy - \underbrace{K(x, 0; \tilde{z}) Q(x, 0; \tilde{z}) - K(0, y; \tilde{z}) Q(0, y; \tilde{z}) + K(0, 0; \tilde{z}) Q(0, 0; \tilde{z})}_{\text{We want to eliminate this}}
\]

Diagonal Expression:

\[
Q(1, 1; \tilde{z}) = \Delta \left(\frac{(1-x)(1-y)(1+x)(x^2-y^2)(x-y)(x+y)}{(1-xy\tilde{z}S(x^{-1}, y^{-1}))(1-x)(1-y)} \right)
\]

where

\[
\Delta \left(\sum_{i, j, n \geq 0} b_i j_n x^i y^j z^n \right) = \sum_{n > 0} b_n x^n y^n z^n
\]

Algebraic operations

- Orbit sum
- Extraction of positive coefficients

orbit sum applied to the start point

releases the \(y \)-constraint

codes the excursions

releases the \(x \)-constraint
WEIGHTED VERSION

\[Q^w_{i,j}(l, x, y) = \frac{1}{a^4 b^3 z^2} \bigtriangleup \left(y^2 \frac{2(y-b)(a-x)(a+x)(a' y - b x')(a y - b x')(a y + b x')} {\left(1 - x y z S(x^{-1}, y^{-1}) \right)(1-x)(1-y)} \right) \]

where

\[S(x, y) = ax + a' x^{-1} + ab' x y' + a'b' x' y \]
\[Q_{\uparrow}(1,1; z) = \frac{1}{a^4 b^3 z} \triangle \left(\frac{2(y-b)(a-x)(a+x)(a'y-bx')(ay-bx)(ay+bx)}{(1-xyz S(x', y'))(1-x)(1-y)} \right) \]

where

\[S(x, y) = ax + a'x^{-1} + ab'xy' + a'b'x'y' \]

\[F(x, y, z) = \frac{G(x, y, z)}{H(x, y, z)} \]

WEIGHTED VERSION

WEIGHTED INVENTORY
UNDERSTANDING THE PROOF

Main ingredient:

 Analytic Combinatorics in Several Variables

Steps:
1. Express the generating function in terms of a diagonal
2. Find the contributing points
3. Transform the generating function into an integral and apply some theorem (Hörmander)
UNDERSTANDING THE PROOF

Main ingredient: Analytic Combinatorics in several variables

Steps:
① Express the generating function in terms of a diagonal
② Find the contributing points
③ Transform the generating function into an integral and apply some theorem (Hörmander)
AN EXPRESSION FOR THE RADIUS

Recall: \(Q_p(1,1;z_b) = \Delta F(x,y,z_b) = \Delta \frac{G(x,y,z_b)}{H(x,y,z_b)} \)

Quick reasoning:
Let \(D = \) disk of convergence of \(F \), and \((x,y,z_b) \in D\)

\(F \) is absolutely convergent on \((x,y,z_b)\)
so \(Q_p(1,1; |xyz_b|) < +\infty \)

Hence radius of \(Q_p \geq \sup_{x \in \overline{D}} |xyz_b| \)

Actually radius of \(Q_p = \sup_{x \in \overline{D}} |xyz_b| \)
\(\text{subject to } H(x,y,z_b) = 0 \)
AN EXPRESSION FOR THE RADIUS

I should have convinced you that:

\[
\left(\text{radius of } Q_p(1,1; z) \right)^{-1} = \min_{\|x\| \leq 1, \|z\| \leq 1} |S(x^{-1}; y^{-1})|
\]

\[S(x, y) = \text{WEIGHTED INVENTORY}\]
AN EXPRESSION FOR THE RADIUS

I should have convinced you that:

\[
\left(\text{radius of } Q_p((1,1); y) \right)^{-1} = \min \left| S(x, y) \right| \quad \text{subject to} \quad |x| \leq 1, |y| \leq 1
\]

\[
S(x, y) = \text{WEIGHTED INVENTORY}
\]

If minimum \(\in \) \[
\begin{cases}
\begin{array}{l}
\text{If minimum } \in \text{ \[\quad \text{reluctant case} \quad \text{and } \quad a < 1 \text{ and } b < 1 \end{array}
\end{cases}
\]

\[
\begin{cases}
\begin{array}{l}
\text{If minimum } \in \text{ \[\quad \text{directed case} \quad \text{and } \quad a \geq 1 \text{ and } a > b \end{array}
\end{cases}
\begin{array}{l}
\text{or } \quad b \geq 1 \text{ and } b > a^2
\end{array}
\]

\[
\begin{cases}
\begin{array}{l}
\text{If minimum } \in \text{ \[\quad \text{Free case} \quad \text{and } \quad 1 < \sqrt{ab} < a < b
\end{array}
\end{cases}
\]

\[
\begin{cases}
\begin{array}{l}
\quad \text{Free case}
\end{array}
\end{cases}
\]
Theorem:

Weight of GB walks of length n

$$= [g^n] Q_p(1,1;\kappa)$$

$$\sim K^n \rho^n -\alpha$$

$$\rho = \frac{2(k+1)}{V^2}$$

$$\rho = \frac{(1+b)(a^2+b)}{ab}$$

$$\rho = \frac{(1+a)^2}{\alpha}$$
PART 2

General Central Weightings
Theorem Let \(S \) be a non-singular set of integer steps in dimension \(2 \). A weight \(p_\sigma \) is assigned to each \(\sigma \in S \). There is equivalence between

(i) The probability of a given walk only depends on its length, its start and end point.

(ii) There exist constants \(a, b, c > 0 \) such that for every \((x_0, y_0) \in S \),

\[
P((x_0, y_0)) = c \times a^{x_0} \times b^{y_0}
\]

(iii) Take \(|S| - 2 - 1 \) "independant" pairs of paths \((w_k, w'_k)\) such that \(w_k \) and \(w'_k \) share the same length, the same start and end point.

Then for every \(k \),

\[
\prod_{\sigma \in w_k} p_\sigma = \prod_{\sigma' \in w'_k} p_{\sigma'}
\]

(iv) The kernels are essentially the same.
What about

(b) There exist constants $a, b, c > 0$ such that

$$Q_p(x, y; z) = Q(ax, by; cz)$$

weighted GF

unweighted GF
GENERATING FUNCTIONS

What about (v) There exist constants $a, b, c > 0$ such that

$Q_r(x, y, z) = Q(ax, by, cz)$

Prop: If a weighting is central, then (v) holds.

Conjecture: If (v) holds, then the weighting is central.

(true for all small 2D-models)
(v) There exist constants $a, b, c > 0$ such that

$$Q_p(x, y; z) = Q(ax, by; cz)$$

Consequence 1: $Q_p(x, y; z)$ is D-finite. \square

$Q(x, y; z)$ is D-finite. (if the weights are central and rational)
Some consequences

(1) There exist constants $a, b, c > 0$ such that

$$Q_p(x, y, z) = Q(ax, by, cz)$$

Consequence 1: $Q_p(x, y, z)$ is D-finite.

$\Rightarrow$$Q(x, y, z)$ is D-finite.

(if the weights are central rational)

Consistent with [Kauers, Yatchak]: systematic search of the D-finite weighted 2D-models

Family 1a Family 1b Family 2a Family 2b Family 3a Family 3b Family 4a Family 4b
Some Consequences

There exist constants $a, b, c > 0$ such that

$$Q_n(x, y; z) = Q(ax, by; cz)$$

Consequence 2: Given a central weighting $p(x_0, y_0) = c \cdot a^{x_0} b^{y_0}$, the weight of excursions of size $n = c^n \times$ number of excursions of size n.
Some Consequences

There exist constants $a, b, c > 0$ such that

$$Q_n(x, y; z) = Q(ax, by; cz)$$

Consequence 2: Given a central weighting $\gamma(x_0, y_0) = c \cdot a^{x_0} b^{y_0}$, the weight of excursions of size $n = \gamma_n \times$ number of excursions of size n.

In general, evaluations of $Q(x, y; z)$ can be equated to central weightings.
THE CONJECTURE OF GARBIT, MUSTAPHA & RASCHEL

\[S(x, y) = \text{WEIGHTED INVENTORY} \]

\[(x^*, y^*) = \text{argmin}_{x \geq 1, y \geq 1} S(x, y) \]

Conjecture
(Every estimate is up to a constant.)

<table>
<thead>
<tr>
<th>((x^, y^) = (1, 1))</th>
<th>(\nabla S(x^, y^) = 0) or (\frac{\partial S}{\partial x}(x^, y^) > 0) and (\frac{\partial S}{\partial y}(x^, y^) > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>balanced</td>
<td>(S((1, 1)) \sim n^{-p/2})</td>
</tr>
<tr>
<td>axial</td>
<td>(S(1, 1) \sim n^0)</td>
</tr>
<tr>
<td>free</td>
<td>(S((1, 1)) \sim n^0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x^* = 1) or (y^* = 1)</th>
<th>(S(x^, y^)) (\sim n^{-p+1})</th>
<th>(S(x^, y^)) (\sim n^{-3/2})</th>
<th>impossible</th>
</tr>
</thead>
<tbody>
<tr>
<td>transitional</td>
<td>directed</td>
<td>impossible</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x^* > 1) and (y^* > 1)</th>
<th>(S(x^, y^)) (\sim n^{-p-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>reluctant</td>
<td>impossible</td>
</tr>
</tbody>
</table>

\[p = \frac{T}{\arccos(c)} \]

\[c = \frac{\frac{\partial S}{\partial x}(x^*, y^*)}{\sqrt{\frac{\partial^2 S}{\partial x^2}(x^*, y^*) + \frac{\partial^2 S}{\partial y^2}(x^*, y^*)}} \]

[do not depend on the central weights]
SOME DRIFT DIAGRAMS

Gouyou - Beauchamps model

Tandem model

Gessel model in its natural cone.
CONCLUSION

- Good framework to understand transitions.

- Many left conjectures:
 - A weighting is central iff $Q_n(x, y; z) = Q(ax, by; cz)$?
 - Which step sets have "pretty" (like conic) regions in their drift diagrams?
 - ...

- Hope to understand more non-D-finite models.