DIAGRAMMES DE CORDES & CARTES ENRAÇINÉES

Julien COURTIEL (GREYC, Univ. de Caen)

DIS PAPA, ÇA SERT À QUOI UNE BIJECTION ?

Journées Algocomb Normastic Mai 2019
THE PROTAGONISTS

THE PHYSICIST

THE COMPUTER SCIENTIST

THE MATHEMATICIAN
ONCE UPON A TIME IN VANCOUVER

MY PHYSICS EQUATION HAS A COMBINATORIAL SOLUTION. MAYBE YOU CAN HELP ME WITH THAT.

OK.
Karen Yeats

- expert in combinatorics and in perturbative Quantum Field Theory

- What she studies: generating functions of Feynman diagrams weighted by their renormalized Feynman integrals (hard to compute!)
The Starting Point

[Marie, Yeats] [Hihn, Yeats]

The Dyson–Schwinger equation

\[G(x, L) = 1 - \sum_{k \geq 1} x^k G(x, \varphi_p) (e^{-L \varphi} - 1) F_k(p) \]

has for solution

\[G(x, L) = 1 - \sum_{C \text{ decorated connected chord diagram}} \omega(C) \left(\sum_{i=1}^{k_1} \int f d(t_i) \cdot \frac{(-L)^i}{i!} \right) \prod_{i=1}^{k_1} f d(c_0) \prod_{i=1}^{k_{n-1}} f d(t_i) \cdot t_i \cdot \cdots \cdot t_{k_{n-1}} \cdot x \]

where \(F_k(p) = b_{k,0} p^{-1} + b_{k,1} + b_{k,2} p + b_{k,3} p^2 + \cdots \) is the regularized Feynman integral of the primitive graphs of size \(k \).
THE STARTING POINT

Theorem [Marie, Yeats] [Hihn, Yeats]

Some physical equation

BAD BAD EQUATION

has for solution

\[\sum \text{BAD BAD FORMULA} \]

connected chord diagram

terminal chords
THE STARTING POINT

Theorem [Marie, Yeats] [Hihn, Yeats]

Some physical equation

BAD BAD EQUATION

has for solution

\[\sum \]

BAD BAD FORMULA

connected chord diagram

terminal chords
First Definitions

Diagram with \(n \) chords

= perfect matching of the set \(\{1, \ldots, 2n\} \)

Connected diagram = "everything is one block."
First Definitions

Diagram with n chords = perfect matching of the set $\{1, \ldots, 2n\}$

Connected diagram = “everything is one block.”
FIRST DEFINITIONS

Diagram with n chords

= perfect matching of the set $\{1, \ldots, 2n\}$

Connected diagram = “everything is one block.”

3 connected components:

![Diagram with 3 connected components]
diagram with \(n \) chords

= perfect matching of the set \(\{1, \ldots, 2n\} \)

connected diagram =

“everything is one block.”
THE STARTING POINT

Theorem [Marie, Yeats] [Hihn, Yeats]

Some physical equation

BAD BAD EQUATION

has for solution

BAD BAD FORMULA

connected chord diagram ✓

? terminal chords?
FIRST DEFINITIONS

diagram with n chords

= perfect matching of the set \(\{1, \ldots, 2n\} \)

connected diagram = "everything is one block."

terminal chord = chord \((a, b)\) such that there is no intersecting chord \((c, d)\) such that \(b < d\).
FIRST DEFINITIONS

- **Diagram with n chords**
 - perfect matching of the set \(\{1, \ldots, 2n\} \)

- **Connected diagram**
 - "everything is one block."

- **Terminal chord**
 - chord \((a, b)\) such that there is no intersecting chord \((c, d)\) such that \(b < d\).
THE STARTING POINT

Theorem [Marie, Yeats] [Hihn, Yeats]

Some physical equation

BAD BAD EQUATION

has for solution

\[\sum \]

BAD BAD FORMULA

connected chord diagram

terminal chords

Their proof: The coefficients in the solution of the physical equation and in the generating function of chord diagrams share the same recurrences.
THE STARTING POINT

Theorem [Marie, Yeats] [Hihn, Yeats]

Some physical equation

BAD BAD EQUATION

has for solution

\[\sum \]

BAD BAD FORMULA

connected chord diagram

terminal chords

Their proof: The coeffs in the solution of the physical equation and in the generating function of chord diagrams share the same recurrences. In other words: magic.
ONE YEAR LATER
AT POLYTECHNIQUE ...

... SO THIS IS OUR WONDERFUL RESULT ABOUT CONNECTED CHORD DIAGRAMS THAT WE FOUND WITH KAREN...
Is there a connection between connected chord diagrams and bridgeless maps?

No, I don't think so.
THE NEXT DAY

CRAP, HE'S RIGHT.
• expert in logic (proof theory)

• What he studies: the connections between lambda-calculus and the combinatorics of maps.
WHAT IS A MAP?

\[
\text{map} = \text{connected graph where we have cyclically ordered the half-edges around each vertex.}
\]

Examples:

\[
\begin{align*}
\text{Circle} & \quad = \quad \text{Cylinder} \quad \neq \quad \text{Torus} \\
\end{align*}
\]

Why is \(\text{Circle} \) the same as \(\text{Cylinder} \)?
WHAT IS A MAP?

map = connected graph where we have cyclically ordered the half-edges around each vertex.

Examples:

Why is the same as?
WHAT IS A MAP?

\[\text{map} = \text{connected graph where we have cyclically ordered the half-edges around each vertex.} \]

Examples:

Why is \(\square \) different from \(\square \)?

Absent pattern in \(\square \):

\[a \leftrightarrow a', \quad a \cup b' \]
\[b \leftrightarrow b', \quad a' \cup b' \]
WHAT IS A MAP?

\[\text{map} = \text{connected graph where we have cyclically ordered the half-edges around each vertex.} \]

Examples:

We root every map on a leaf.
WHAT IS A MAP?

\[\text{map} = \text{connected graph where we have cyclically ordered the half-edges around each vertex}. \]

Examples:

- **1 edge**

- **2 edges**

- **3 edges**
WHAT IS A MAP?

\[\text{bridge (or isthmus)} = \text{edge which disconnects the map when removed} \]

\[\text{bridgeless map} = \text{map without any bridge (duh)} \]

*: The root is not a bridge.
WHAT IS A MAP?

bridge (or isthmus) = edge which disconnects the map when removed.

bridgeless map = map without any bridge

Question: Which are the bridgeless maps?

1 edge

2 edges

3 edges
WHAT IS A MAP?

bridge (or isthmus) = edge which disconnects the map when removed.

bridgeless map = map without any bridge

Question: Which are the bridgeless maps?

1 edge

2 edges

3 edges

4 edges
Our Theorem

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.
Our Theorem

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Why is this surprising?

- The sequence counting the connected chord diagrams (A000639 in OEIS) was actively studied.

 1952 Touchard
 1978 Everett
 2000 Flajolet-Noy
 2016 Karen & I

but no mention of maps!
OUR THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Why is this surprising?

- A bijection between maps and indecomposable diagrams was already known! [Ossona de Mendez-Rosenstiehl] [Cori]
- The sequence counting the connected chord diagrams ([A000639 in OEIS]) was actively studied

1952 Touchard

1978 Everett

2000 Flajolet-Noy

2016 Karen & I

but no mention of maps!
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Why is this surprising?

- A bijection between maps and indecomposable diagrams was already known! [Ossona de Mendez-Rosenstiehl] [Cori]
Our Theorem

Theorem [Courtiel, Yeats, Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Why is this surprising?

- A bijection between maps and indecomposable diagrams was already known! [Ossona de Mendez, Rosenstiehl] [Cori]

indecomposable diagram

= diagram which is not the concatenation of two diagrams

Ex: Counter-ex:

\[
\begin{array}{c}
\includegraphics[scale=0.5]{example1.png} \\
\includegraphics[scale=0.5]{example2.png}
\end{array}
\]
Our Theorem

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Why is this surprising?

- A bijection between maps and indecomposable diagrams was already known! [Ossona de Mendez-Rosenstiehl] [Cori]

Indecomposable diagram

= diagram which is not the concatenation of two diagrams

Ex: Counter-ex:

\[\text{\includegraphics[width=0.2\textwidth]{diagram}} \]

However, their bijection [OMR] indecomposable diagrams maps indecomposable diagrams [Cori] does not restrict to connected diagrams bridgeless maps.
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.
Theorem [Courtiel Yeats Zeilberger]
There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let’s show that
the number \(\mathcal{C}_n \) of connected diagrams with \(n \) chords
and the number of bridgeless maps with \(n \) edges
both satisfy
\[
\mathcal{C}_1 = 1 \quad \text{and} \quad \mathcal{C}_n = \sum_{k=1}^{n-1} (2k-1) \times \mathcal{C}_k \times \mathcal{C}_{n-k}
\]
OUR THEOREM

Theorem [Courtiel Yeats Zeilberger]
There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that
the number C_n of connected diagrams with n chords
and the number of bridgeless maps with n edges
both satisfy

$$C_1 = 1$$
and

$$C_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times C_{n-k}$$
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that the number c_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

$$c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} \frac{(2k-1) \times C_k \times c_{n-k}}{\text{number of intervals of a diagram with } k \text{ chords}}$$

CONNECTED DIAGRAMS
THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that the number c_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

\[c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} \frac{(2k-1) \times c_k \times c_{n-k}}{\text{number of intervals of a diagram with } k \text{ chords}} \]
OUR THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that the number c_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

$$c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}$$
OUR THEOREM

Theorem

[Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that

the number \(c_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
\begin{align*}
& c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k} \\
& \text{CONNECTED DIAGRAMS}
\end{align*}
\]
OUR THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let’s show that the number \(C_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} (2k-1) \cdot C_k \cdot C_{n-k}
\]
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that the number c_m of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

\[c_1 = 1 \quad \text{and} \quad c_m = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k} \]
OUR THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let’s show that the number \(C_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times C_{n-k}
\]
Our Theorem

Theorem [Courtiel Yeats Zeilberger]
There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(C_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times C_{n-k}
\]
Our Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(c_1 \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
 c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times c_{n-k}
\]
Theorem [Courtiel, Yeats, Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that the number c_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

$$c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) c_k c_{n-k}$$

CONNECTED DIAGRAMS
Theorem [Courtiel Yeats Zeilberger]
There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that
the number c_n of connected diagrams with n chords
and the number of bridgeless maps with n edges
both satisfy

$$c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}$$
Our Theorem

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let’s show that the number c_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

$$c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}$$

$$\downarrow$$

CONNECTED DIAGRAMS
OUR THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let’s show that the number \(\mathcal{C}_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
\mathcal{C}_1 = 1 \quad \text{and} \quad \mathcal{C}_n = \sum_{k=1}^{n-1} (2k-1) \cdot \mathcal{C}_k \cdot \mathcal{C}_{n-k}
\]
Our Theorem

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(C_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times C_{n-k}
\]
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that

the number \(C_n \) of connected diagrams with \(n \) chords

and the number of bridgeless maps with \(n \) edges both satisfy

\[
C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times C_{n-k}
\]
THEOREM

Theorem [Courtiel, Yeats, Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let’s show that the number C_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

$$C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times C_{n-k}$$

Bridgeless Maps
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that the number c_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

$$c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}$$
Our Theorem

Theorem [Courtiel, Yeats, Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(\mathcal{C}_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
\mathcal{C}_1 = 1 \quad \text{and} \quad \mathcal{C}_n = \sum_{k=1}^{n-1} (2k-1) \times \mathcal{C}_k \times \mathcal{C}_{n-k}
\]
Our Theorem

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(c_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}
\]
Our Theorem

Theorem [Courtiel Yeats Zeilberger]
There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(\mathcal{C}_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
\mathcal{C}_1 = 1 \quad \text{and} \quad \mathcal{C}_n = \sum_{k=1}^{n-1} (2k-1) \times \mathcal{C}_k \times \mathcal{C}_{n-k}
\]
OUR THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(C_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} (2k-1) \cdot C_k \cdot C_{n-k}
\]

BRIDGELESS MAPS
OUR THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that the number c_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

$$c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}$$
Our Theorem

Theorem [Courtiel, Yeats, Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(c_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}
\]
OUR THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(L_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
L_1 = 1 \quad \text{and} \quad L_n = \sum_{k=1}^{n-1} (2k-1) L_k L_{n-k}
\]
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that the number c_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

$$c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times c_{n-k}$$
Our Theorem

[Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(C_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times C_{n-k}
\]
Our Theorem

[Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(\mathcal{C}_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
\mathcal{C}_1 = 1 \quad \text{and} \quad \mathcal{C}_n = \sum_{k=1}^{n-1} (2k-1) \times \mathcal{C}_k \times \mathcal{C}_{n-k}
\]
OUR THEOREM

Theorem [Courtiel, Yeats, Zeilberger]
There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(\mu_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
\mu_1 = 1 \quad \text{and} \quad \mu_n = \sum_{k=1}^{n-1} (2k-1) \times \mu_k \times \mu_{n-k}
\]
THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(C_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times C_{n-k}
\]
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that the number C_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

$$C_1 = 1 \quad \text{and} \quad C_n = \sum_{k=1}^{n-1} (2k-1) \times C_k \times C_{n-k}$$
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(c_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}
\]

![Diagram of a connected diagram with chords and bridgeless maps](image)
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with n chords as bridgeless maps with n edges.

Let's show that the number c_n of connected diagrams with n chords and the number of bridgeless maps with n edges both satisfy

$$c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}$$

Bridgeless Maps
OUR THEOREM

Theorem [Courtiel, Yeats, Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that the number \(c_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}
\]
Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let’s show that the number \(c_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
c_1 = 1 \quad \text{and} \quad c_n = \sum_{k=1}^{n-1} (2k-1) \times c_k \times c_{n-k}
\]

BRIDGELESS MAPS
OUR THEOREM

Theorem [Courtiel Yeats Zeilberger]

There are as many connected diagrams with \(n \) chords as bridgeless maps with \(n \) edges.

Let's show that

the number \(\mathcal{C}_n \) of connected diagrams with \(n \) chords and the number of bridgeless maps with \(n \) edges both satisfy

\[
\mathcal{C}_1 = 1 \quad \text{and} \quad \mathcal{C}_n = \sum_{k=1}^{n-1} (2k-1) \times \mathcal{C}_k \times \mathcal{C}_{n-k}
\]

Bridgeless Maps
Theorem [Courtel Yeats Zeilberger]

There are as many connected diagrams with η chords as bridgeless maps with η edges.
BETWEEN INDECOMPOSABLE DIAGRAMS AND MAPS
Decomposition of indecomposable diagrams:

\[
\text{indecomposable diagram} = \text{\begin{itemize}
 \item \includegraphics[width=0.08\textwidth]{diagram1.png}
 \item \includegraphics[width=0.1\textwidth]{diagram2.png}
 \item \includegraphics[width=0.15\textwidth]{diagram3.png}
\end{itemize}}
\]
Decomposition of indecomposable diagrams:

\[
\text{indecomposable diagram} = \begin{array}{c}
\text{or} \\
\end{array}
\]

Decomposition of maps:

\[
\text{map} = \begin{array}{c}
\text{or} \\
\end{array}
\]

[Arquès - Béraud]
BETWEEN INDECOMPOSABLE DIAGRAMS AND MAPS

Decomposition of indecomposable diagrams:

\[
\text{indecomposable diagram} = \begin{array}{c}
\text{or} \\
\text{or} \\
\end{array}
\]
Decomposition of indecomposable diagrams:

\[
\text{indecomposable diagram} = \text{Diagram 1} \quad \text{or} \quad \text{Diagram 2} \quad \text{or} \quad \text{Diagram 3}
\]
BETWEEN INDECOMPOSABLE DIAGRAMS AND MAPS

Decomposition of indecomposable diagrams:

indecomposable diagram = \[\text{diagram} \] or \[\text{diagram} \] or \[\text{diagram} \]

Decomposition of maps:

map = \[\text{map} \] or \[\text{map} \] or \[\text{map} \]

[Arques - Beraud]

bridge

not a bridge
Decomposition of indecomposable diagrams:

indecomposable diagram = \textbullet \text{ or } \text{ or }

Decomposition of maps:

map = \text{ or } \text{ or }

[Arquès - Béraud]
Decomposition of indecomposable diagrams:

indecomposable diagram = \[\text{diagram 1}\] or \[\text{diagram 2}\] or \[\text{diagram 3}\]

Decomposition of maps:

map = \[\text{map 1}\] or \[\text{map 2}\] or \[\text{map 3}\]

[Arquès - Béraud]
Decomposition of indecomposable diagrams:

indecomposable diagram = \[\text{Diagram 1} \] or \[\text{Diagram 2} \] or \[\text{Diagram 3} \]

Decomposition of maps:

map = \[\text{Diagram 4} \] or \[\text{Diagram 5} \] or \[\text{Diagram 6} \]

[Arquès - Béraud]

Same decomposition = same numbers!
Decomposition of indecomposable diagrams:

\[
\text{indecomposable diagram} = \begin{array}{c}
\text{or}\end{array}
\]

Decomposition of maps:

\[
\text{map} = \begin{array}{c}
\text{or}\end{array}
\]

Same decomposition = same numbers! But where is the bijection?
THE BIJECTION

\[\text{maps} \quad \phi \quad (\text{indecomposable}) \quad \text{diagrams} \]
THE BIJECTION

maps ϕ (indecomposable) diagrams

bridge

not a bridge
THE BIJECTION

maps \(\phi \) (indecomposable) diagrams

bridge

not a bridge
THE BIJECTION

maps \phi \rightarrow (indecomposable) diagrams

bridge

not a bridge
THE BIJECTION

maps \rightarrow (indecomposable) diagrams

\phi

bridge

\phi(C_1) \rightarrow \phi(C_2)

not a bridge

\phi(C')

We label the corners from 1 to n
Some properties of the bijection

[C. Yeats Zeilberger]

maps \quad \leftrightarrow \quad \text{indecomposable diagrams}
Some properties of the bijection

[Charalampos Yeats-Klein, Zeilberger]

Maps \quad \leftrightarrow \quad \text{indecomposable diagrams}

Bridgeless maps \quad \leftrightarrow \quad \text{connected diagrams}
Some properties of the bijection

[C. Yeats Zeilberger]

maps \leftrightarrow indecomposable diagrams

bridgeless maps \leftrightarrow connected diagrams

leaves \leftrightarrow isolated chords
Some properties of the bijection

[C. Yeats Zeilberger]

maps \iff \text{indecomposable diagrams}

bridgeless maps \iff \text{connected diagrams}

leaves \iff \text{isolated chords}

planar maps \iff \text{indecomposable diagrams avoiding } \cdots \cdots \cdots
SOME PROPERTIES OF THE BIJECTION

[C. Yeats Zeilberger]

maps \quad \longleftrightarrow \quad \text{indecomposable diagrams}

bridgeless maps \quad \longleftrightarrow \quad \text{connected diagrams}

leaves \quad \longleftrightarrow \quad \text{isolated chords}

planar maps \quad \longleftrightarrow \quad \text{indecomposable diagrams}

avoiding \quad \text{ terminal chords}
Some properties of the bijection

[C. Yeats Geoffe] maps \leftrightarrow \text{indecomposable diagrams}

bridgeless maps \leftrightarrow \text{connected diagrams}

leaves \leftrightarrow \text{isolated chords}

planar maps \leftrightarrow \text{indecomposable diagrams avoiding}

vertices! \leftrightarrow \text{terminal chords}
Application to Perturbative QFT

Theorem [Marie, Yeats] [Hihn, Yeats]

The Dyson-Schwinger equation

\[G(x, L) = 1 - \sum_{k \geq 1} x^k \ G(x, \mathcal{D}_p) \ (e^{-Lp} - 1) \ F_k(p) \]

has for solution

\[G(x, L) = 1 - \sum_{C \ \text{decorated connected chord diagram}} w(C) \left(\sum_{i = 1}^{k_r} \ \int \frac{d(t_i) t_i - i}{i!} \right) \prod_{i = 1}^{k_r} \int \frac{d(0_i) t_i.t_i}{t_i.t_i} \]

such that \(k_1 < k_2 < \ldots < k_r \)

are the positions of the terminal chords.

where \(F_k(p) = F_{k,0} p^{-1} + F_{k,1} p + F_{k,2} p^2 + \ldots \) = regularized Feynman integral of the primitive graphs of size \(k \).
APPLICATION TO PERTURBATIVE QFT

Theorem [Marie, Yeats] [Hihn, Yeats]

The Dyson-Schwinger equation

\[
G(x, L) = 1 - \sum_{k \geq 1} x^k \left(G(x, \partial_x) \left(e^{-\Delta} - 1 \right) F_k(p) \right)
\]

has for solution

\[
G(x, L) = 1 - \sum_{\text{C decorated bridgeless maps}} \omega(C) \left(\sum_{i=1}^{\ell_1} \int d(t_i) t_i^{-i} \left(\frac{-L}{i!} \right)^i \prod_{c \text{ non terminal}} \int d(c)_0 \prod_{i=1}^{\ell_i} \int d(t_i) t_i t_{i-1}^i x \right)
\]

where \(F_k(p) = b_k, 0 p^{-1} + b_k, 1 + b_k, 2 p + b_k, 3 p^2 + \ldots \) = regularized Feynman integral of the primitive graphs of size \(k \)
APPLICATION TO PERTURBATIVE QFT

Theorem [Marie, Yeats] [Hihn, Yeats]

Some physical equation

BAD BAD EQUATION

has for solution

\[\sum \text{bridgeless maps} \]

BAD BAD FORMULA

vertices
APPLICATION TO PERTURBATIVE QFT

Theorem \[[\text{Marie, Yeats}] [\text{Hihn, Yeats}]\]

Some physical equation

\[\sum \text{BAD BAD EQUATION} \]

has for solution

\[\sum \text{BAD BAD FORMULA} \]

bridgeless maps

vertices

"New" proof: Now the recurrence can be explained combinatorially.
APPLICATION TO PERTURBATIVE QFT

Theorem [Marie, Yeats] [Hihn, Yeats]

Some physical equation

BAD BAD EQUATION

has for solution

\[\sum \text{ bridgeless maps} \]

\[\text{vertices} \]

"New" proof: Now the recurrence can be explained combinatorially.

magic = science?
APPLICATION TO ASYMPTOTICS

Ex under the uniform distribution:

Theorem [Stein-Everett]

A diagram is connected with proba \(n \to \infty \) \(\frac{1}{e} \)

can be (almost) straightforwardly translated by

Theorem

A map is bridgeless with proba \(n \to \infty \) \(\frac{1}{e} \)
Ex 2 under the uniform distribution:

Theorem

A random map with n edges has $\sim \ln(n)$ vertices.

can be (almost) straightforwardly translated by

Theorem

A random connected diagram with n chords has $\sim \ln(n)$ terminal chords.
APPLICATION TO LAMBDA-CALCULUS

ANOTHER STORY...
Ils vécurent heureux et eurent beaucoup de papiers...

THE END

ZZZZZ